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profile of the 'defect' line becomes asymmetric and the 
'defect' line turns into the 'excess-deficient' line as a 
result of anomalous absorption. The subsidiary maxima 
of Kikuchi lines, corresponding to the oscillation term 
in (4.5) are presented separately. 

Calculated profiles of the Kikuchi band for reflexion 
220 of a single Si crystal are plotted in Fig. 2. From 
these profiles it is clear that for an absorbing crystal, 
the band contrast is reversed at different thicknesses 
depending on the parameter s = S(q0, q,)/S(qo, qo). Par- 
ticularly for the thick crystal this is in accordance with 
the results of Okamoto et al. (1971) and Ishida (1971) 
and qualitatively explains the Kikuchi patterns ob- 
served by Shinohara et al. (1933), Boersch (1937), 
Pfister (1953) and Nakai (1970). Also, for a slightly 
absorbing crystal, when/Zht< 1 the band profile oscil- 
lates and the number (the amplitude) of oscillations 
varies directly (inversely) with the argument of w. 

Conclusion 

1. A consistent dynamical theory of Kikuchi patterns 
in two-beam approximation has been developed, 
which takes into account the absorption of both the 
elastically and inelastically scattered electrons in a 
crystal. 

2. The formulae for calculation of the intensity profiles 
have been obtained. 

3. The theory qualitatively explains the change of the 
Kikuchi patterns with increase in the crystal thick- 
ness. 

4. As a result of anomalous absorption of inelastically 
scattered waves the 'defect' line becomes 'excess- 
deficient' in a thick crystal. 

5. The oscillating term in the intensity distribution 
permits one to explain the fine structure of a Kiku- 
chi pattern. 

6. The method suggested in the present paper can be 
applied to the many-beam diffraction of inelastically 
scattered electrons in thick absorbing crystals. 
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Debye Temperatures of KC1, KBr and RbCI lay X-ray diffraction 
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Debye temperatures of KC1, KBr and RbCI have been determined by X-ray diffraction from room 
temperature up to about 800°K using methods due to Paskin [Acta Cryst. (1957). 10, 667-669] and Chip- 
man [J. Appl. Phys. (1960). 31, 2012]. The anharmonic contribution to the Debye O is shown to come 
essentially from thermal expansion. The plot of the reduced thermal expansion ~/~m/2 versus T/Aa20 2 
gives a common curve for all the three halides. Here, ~m/2 is the value of ~ at T= ½Tin, Tm being the melting 
point, A is the mean atomic weight and a the lattice constant. An equation relating ~, T and 0 for the 
alkali halides is established for the first time. The values of the root mean square amplitudes, (u2) 1/2, are 
calculated for the alkali halides from the equation and are compared with those of other workers. 

Introduction 

The temperature variations of the X-ray Debye tem- 
peratures of KCI and KBr have been investigated 

principally by Jaylakshmi & Viswamitra (KCI, 1970) 
and Baldwin, Pearman & Tompson (KBr, 1965). Reli- 
able investigations on RbC1 are not found in the litera- 
ture. 
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Experimental 

The experimental procedure is fully described by Pat- 
hak & Vasavada (1970). The profiles of lines 420 and 
422 were recorded on a chart recorder and planim- 
etered. 

The accurate determination of the integrated inten- 
sity of a line profile of an X-ray reflexion depends, to 
some extent, on the proper estimation of the back- 
ground. Normally, the background is estimated in two 
different ways: (i) a continuous curve is drawn touching 
the minima of the observed intensity distribution and 
(ii) the mean of the two minima adjacent to a given 
Bragg peak is taken to be the background for that 
peak. Both these methods are empirical and subjective, 
and subject to large systematic and random errors. 
Eastabrook & Wilson (1952), Tournarie (1956), Pike 
& Wilson (1959) and Langford & Wilson (1963) have 
discussed this aspect of the choice of the linear back- 
ground. In the present investigation, the method used 
to determine the background was that given by Mitra 
& Misra (1966) who have studied the effect on different 
diffraction parameters of systematic errors arising 
from a wrong background level. The accuracy of the 
results is estimated at 1-2 %. 

Method of calculating OM 

(a) The most obvious method to obtain OM would be 
to measure the intensities of several reflexions and to 
use the usual relation 

In ( f Z l F 2 ) = l n  K +  2B  sin 2 0/22 (1) 

where f is the atomic scattering factor, F the structure 
factor, B the Debye-Waller factor, 0 the Bragg angle, 
2 the wavelength and K a constant. The plot of 
In (f2/F2) v e r s u s  sin 2 0 / , ~ ,  2 will give both B, from the 
slope of the plot, and In k, from the intercept at sin 2 0/22 
=0.  The value of OM is obtained from the measured 
value of B by using the Debye-Waller formula 

2B= 12hZT~J(x ) /mkO~ (2) 

where m is the mass of the atom, T the absolute tem- 
perature of the sample, x--OM/T and 

1 f x udu  x (3) 
v(X)=x o ~  + 4" 

gt(x) varies from 1-000 to 1.164 for 0 < x < 2 . 5  and thus 
Equation (2) can be solved for OM. 

(b) After applying suitable corrections, equation 
(1) can be transformed into the following equation for 
a flat powder specimen of an f.c.c, crystal: 

[ I = K ' B '  exp 12h2 ( 1 - f l )  sinz 0 -O-L- 
m k  " . 22 . (4) 

where I is the measured integrated intensity of a re- 
flexion line, ~u is defined in equation (3), K' is a constant 

independent of Bragg angle and temperature T, B'  is 
given by 

1 + cos 2 20 
B ' =  N p f  z . sinZ 0 cos 0 

where N is the number of unit cells irradiated and p 
is the multiplicity factor. 

The quantity ( 1 - f l )  takes into account the one 
phonon thermal diffuse scattering (TDS) contribution 
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Fig. 1. Temperature dependence of the quantity In It~Is for 
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to the measured intensity according to Chipman & 
Paskin (1959). The quantity/3 for f.c.c, crystal is given 
by ( ),, acos0 /~=½ ~ .~ 

where a is the lattice constant and A is the length of 
the straight-line background expressed in radians. 

Writing equation (4) for temperatures T and To and 
transforming we obtain 

[,  
R -  12h 2 " ( 1 - f l )  sin02 lnT0 - l n  

To~o Tq/  sin 20 
O ~to O ~t " s in20o" 

(5) 

To may be any reference temperature, say room tem- 
perature. To calculate OM from equation (5), either the 
value of OM0 is required or some additional relation 
between OM and OMo must be known. In the present 
investigation the following two additional relations 
have been used :- 

(i) If the temperature dependence of OM is due to 
volume expansion only, OM can be obtained by using 
the relation OM{V(T)}.  Zener & Bilinsky (1936), Owen 
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Fig.4. The Debye O (average) versus temperature:-KC1. 
x Paskin's method, © Chipman's method. 
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Fig. 5. The Debye O (average) versus temperature: -KBr. 
x Paskin's method, © Chipman's method. 

& Williams (1947) and Paskin (1957) have discussed 
this aspect. According to Paskin 

OMIOMo= ( VoI V)~ 
where V is the volume of the crystal at temperature T. 

In practice, it is usually the thermal expansion that 
is measured. For isotropic cubic crystals, we therefore 
have 

O M/ O MO = (ao/a) a" (6) 

where a is the lattice constant at temperature T. For 
T> O, the Debye-Waller factor 2M is given by 

2 M =  
12 h 2 sin 20 T 

mk 2 z 0 2  

Substituting the value of OM from equation (6) we 
obtain 

2 M =  1 2 h 2 s i n 2 0 ( a )  6~ 
mk~,2 02MO -~0 T .  (7) 

Thus 2M is seen to be proportional to the reduced 
temperature T' = T(a/ao) 6~. As the intensity I of a given 
line is proportional to exp ( - 2 M ) ,  it follows that 

I 12h 2 sin z 0 
In lo -- mk 22 020 ( T ' - T o )  . (8) 

Hence, if the temperature variation of OM is really a 
volume effect, the plot of In (I/Io) versus T" must be a 
straight line. 

From the slope of this line, the room temperature 
value of O viz. OMo can be found. OM can then be ob- 
tained from equation (5) for various temperatures. 

(ii) Another way of estimating OM0 and hence OM at 
various temperatures is that used by Chipman (1960). 
Using the fact that O versus T curves, as determined 
from the elastic constants, are approximately linear, 
one can plot a series of O versus T curves, giving Oo 
a series of arbitrary values, and select the curve with 
smallest curvature. 

Results and discussion 

The plots of In (lr/IR) (1R = intensity at room temper- 
ature) versus reduced temperature T ' [ T ' =  T(ar/aR) 6~] 
for line 420 are given in Figs. 1, 2 and 3. Debye OM at 
different temperatures are presented in Figs. 4, 5 and 6. 
The values of OM in the plots are averages of those cor- 
responding to the lines 420 and 422. 

The room temperature values of OM by Chipman's 
(1960) method are: 

KC1 220 + 3 ° • = _ • = _ K,  KBr 160+2°K,  

RbC1 = 156 + 2 °K.  

Since the plots of ln(Ir/IR) versus reduced temperature 
(Figs. 1, 2, 3) are straight lines, it is evident that the 
anharmonic contribution to the Debye O in the range 
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of temperatures examined comes essentially from ther- 
mal expansion. 

Cartz (1955) has considered the temperature varia- 
tion of thermal diffuse X-ray scattering and has shown 
that the amplitude of thermal vibrations of atoms in 
cubic crystals can be expressed in terms of the distance 
between neighbouring atomic positions and the melting 
point. He has also shown that a 'law of corresponding 
states' exists in the case of physical properties like 
thermal expansion, Debye O etc. which depend on 
atomic vibrations. 

The common relation given by him between thermal 
expansion and the mean square amplitude of atomic 
vibrations, u 2, for all cubic metals is 

o~/o~m/z = 0"74 + I0"7 (u2/r 2) (9) 

where C~r,/2 is the coefficient of thermal expansion at 
T=½T,, (Tin being the melting point) and r is half the 
distance between neighbouring atomic positions. Since, 
for T> O, 

u ~ -  9hZT =4.364x 10_t 4 _ T  (10) 
4r&mkO 2 M O 2 

we have 

ct/c~m/z=0.74+0.374 × 10 -1~ T/Aa z 0 z (11) 

where a is the lattice parameter given by r = a/21/2 for 
the f.c.c, structure. 

In view of the present accurate determinations, it 
was thought to be of interest to draw the curve be- 
tween 0cIc~,,/2 and T / A a 2 0 2  and to see if the law of cor- 
responding states holds for alkali halides. The curve is 
shown in Fig. 7 and is given by 

ct/c~,,,,.2 =0.70+0.364 x 10 -1~ T/Aa20 2 (12) 

The root mean square amplitudes of atomic vibrations, 
(uZ) ~/z, obtained using equation (12) are given in Table 1 
and compared with those of other workers. The 
estimated error in (uZ) t/z is about 8 %. Since the values 
of the root mean square amplitudes of all the halides 

Table 1. Root mean square amplitudes o f  atomic vibra- 
tions at room temperatures 

From (uZ) 1/z (uZ) l/z 
NaC1 Equation Lonsdale Linkoaho 
type (12) (1948) (1969) 

KCI 0.27 0.26 0.28 
KBr 0.29 0.27 0.29 
KI 0.31 0.30 0.34* 
KF 0.21 0.21 
NaCI 0.23 0"24 0-24 
NaBr 0-25 0.25 
NaI 0.26 0.28 
NaF 0.17 0.19 0.20 
RbCI 0.29 0.26 0.29 
RbBr 0.31 0.29 
RbI 0.34 0.32 
LiF 0.16 0-17 
LiCI 0-24 0.22 

* Pearman & Tompson (1967). 
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obtained from equation (12) agree well with those of 
other workers, it is reasonable to assume that this 
equation is common to all the alkali halides. 

The values of O used to draw Fig. 7 were those 
determined by Chipman's method. The values of c~ 
for KCI were obtained from Pathak & Vasavada (1970) 
while those for RbC1 were communicated by Dr Vasa- 
vada prior to publication. Values of c~ for KBr (to be 
published separately) were determined by the authors. 
Further work on other alkali halides is in progress. 

Financial assistance to one of us (JMT) by the Guja- 
rat University is gratefully acknowledged. 
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A Neutron-Diffraction Study of ZnS and ZnTe 
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Accurate integrated intensities for the Bragg reflexion of neutrons by crystals of ZnS and ZnTe have 
been measured at room temperature. Measurements were made at a number of wavelengths and correc- 
tions were made for extinction and thermal diffuse scattering. The experimental data show contribu- 
tions arising from third-order anharmonic thermal vibration of the ions. However, it is shown that, 
although both types of ion have a tetrahedral site symmetry and can thus give rise to such anharmonic 
contributions, only a single anharmonicity parameter can be determined from the neutron measure- 
ments. The magnitude of the anharmonicity parameter is similar to that obtained for the fluorine 
ions in CaF2, SrF2 and BaF2. The nuclear scattering amplitude of zinc was refined to bzn = 0.569(2) 
x 10 -12 cm, assuming a value for the nuclear scattering amplitude of sulphur of bs=0.2847 
(1) × 10 -12 cm. 

Introduction 

In almost all cases determination of crystal structures 
is carried out using models which assume harmonic 
thermal vibration for all constituent atoms. The 
thermal vibration of each atom is thus constrained 
such that the time averaged probability function for 
the position of an atom is a Gaussian function of the 
displacement from its equilibrium position and con- 
tours of equal probability are ellipsoids. However, in a 
crystal the nearest neighbours will be arranged ne- 
cessarily witb a particular symmetry which one would 
expect to influence the thermal vibration of the atoms. 
For example, in a cubic crystal such as CaF2 or ZnS, 
with atoms having neighbours situated at the corners 
of a tetrahedron, it is reasonable to expect the thermal 
vibration to be distorted from the harmonic cubic 
(spherical) symmetry by a contribution such that the 
atoms spend more time in directions away from the 
nearest neighbours than in directions towards them, 
i.e. the thermal vibration includes an anharmonic 
component with tetrahedral symmetry. Such anhar- 
monic components will contribute to the diffracted 
Bragg intensities and can be readily observed in such 
structures as the fluorite structure, e.g. in BaF2 con- 

tributions of about 10 % have been observed in room 
temperature neutron-diffraction measurements. Thus 
careful diffraction measurements can give valuable 
information about the thermal vibration of the atoms 
and the effect on this of the site symmetry. 

In earlier papers we have described series of accurate 
intensity measurements for the Bragg reflexion of 
neutrons from BaF2 (Cooper, Rouse & Willis, 1968) 
and SrF2 and CaF2 (Cooper & Rouse, 1971). These 
materials all have the cubic fluorite structure and the 
neutron data were found to show significant effects 
arising from a third-order anharmonic component in 
the thermal vibration of the fluorine ions, as allowed 
by their non-centrosymmetric site symmetry. These 
earlier measurements thus confirmed the importance 
of anharmonic effects for atoms occupying tetrahedral 
sites in the fluorite structure and further measurements 
have now been carried out in order to explore the 
possible importance of anharmonic effects in other 
types of structure. The present paper describes meas- 
urements which have been made on crystals of ZnS and 
ZnTe. 

Considerable care was exercised in these measure- 
ments in order to achieve data which were considered 
to be reliable to the required level of accuracy. The 
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